On conformally recurrent Ricci-recurrent manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Recurrent and Ricci Recurrent Lorentzian Trans-Sasakian Manifolds

The purpose of the paper is to introduce the notion of generalized recurrent Lorentzian transSasakian manifold and study some of the properties of generalized recurrent and Ricci recurrent Lorentzian Trans-Sasakian manifolds.

متن کامل

On some generalized recurrent manifolds

‎The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds‎, ‎called‎, ‎super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [‎A.A‎. ‎Shaikh and A‎. ‎Patra‎, On a generalized class of recurrent manifolds‎, Arch‎. ‎Math‎. ‎(Brno) 46 (2010) 71--78‎.] and weakly generalized recurrent manifolds ...

متن کامل

Conformally Flat Manifolds with Nonnegative Ricci Curvature

We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...

متن کامل

on generalized conformally recurrent kaehlerian weyl spaces

in this study, 2n -dimensional (n > 2) generalized conformally recurrent kaehlerian weyl spaces andgeneralized conharmonicaly recurrent kaehlerian weyl spaces are defined. it is proved that a kaehlerian weylspace is generalized conformally recurrent if and only if it is generalized recurrent.also, it is shown that akaehlerian weyl space will be generalized recurrent if and only if it is general...

متن کامل

On Φ–recurrent Sasakian Manifolds

The objective of the present paper is to study φ–recurrent Sasakian manifolds. AMS Mathematics Subject Classification (2000): 53C05, 53C20, 53C25

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1982

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-46-1-45-57